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Symbolic representations?
n Do NN language models and end-end systems w/ lots of 

training data still need symbolic representations?
q Lexical resources can improve LM performance  

n We still need our NLP systems to
q Adapt quickly to new domains, genres, languages w/out large 

amounts of training data  (little or no data for low resource languages)
q Be explainable, in spite of the opacity of NN’s
q Support reasoning for novel, complex tasks, i.e. robot navigation, 

“why” questions, decision making support in natural disasters
n Hybrid (Symbolic/NN) systems could be the answer
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Majewska, et. al, ACL 2021, 
Gung & Palmer, IWCS 2021



Outline – Compare and Contrast w/re 
recovering implicit information
n Briefly review

q Universal dependencies
q Proposition Bank – semantic role labels

n English Abstract Meaning Representations
q Including implicit arguments and spatial relations

n Moving towards Uniform Meaning Representations
q That are cross-linguistically general
q Add temporal relations, logical form, tense, aspect and modality 
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Universal Dependencies (UD)
UD is a cross-lingually consistent grammatical  annotation scheme.

English

Bulgarian  

Czech
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(Version 2.7 treebanks are available at http://hdl.handle.net/11234/1-3424. 
183 treebanks, 104 languages, released November 15, 2020.)

http://hdl.handle.net/11234/1-3424


UD Parsing
Fast and accurate parsing in bulk

SyntaxNet, 2017

19

Penn TreeBank, English

Soochow U, China

95.92

94.16

96.14

94.49

2016

Zhang, et. al, 
ACL 2020
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(beat
95.74; 94.08)

https://www.aclweb.org/anthology/2020.acl-main.302.pdf
https://www.aclweb.org/anthology/2020.acl-main.302.pdf


Universal Dependencies have had a 
transformative effect. They
n Provide a clear, straightforward entrée to building 

dependency parsers; look a lot like ‘spans’!
n Open the door to NLP advances for dozens of languages
n Unify the community and gives equal time and space to 

many languages and their speakers

n The field owes a huge debt to this group! Thanks!     🎉
As wonderful as universal dependencies are, what don’t they do?
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Do universal dependencies give us everything we 
want?  Is there a better way to recover implicit 
information? 

n Gas could go to $ 10 a gallon.
n The president pardoned him for health reasons.
n My mother’s birthday was yesterday and I forgot!
n He denied any wrongdoing.
n Not all yarn frogs easily.
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Do universal dependencies give us everything we 
want?

n Gas could go to $ 10 a gallon.
n The president pardoned him for health reasons.
n My mother’s birthday was yesterday and I forgot!

n How about Abstract Meaning Representations?
n Can we make AMRs as universal as grammatical 

dependencies?
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Abstract Meaning Representation (AMR)

n NSF Funding (2009-2016)
q STAGES - Statistical Translation And GEneration

using Semantics
q Colorado (PI), ISI, Rochester, Brandeis, Columbia

n DARPA DEFT funding (2012-2017)
q USC-ISI, Colorado, LDC, CMU
q First guidelines released April 24, 2012 
q LDC releases, recent one is 60K sentences with 

AMR’s, funded by DARPA DEFT
Laura Banarescu; Claire Bonial; Shu Cai; Madalina Georgescu; Kira 
Griffitt; Ulf Hermjakob; Kevin Knight; Philipp Koehn; Martha Palmer; 
Nathan Schneider, Abstract Meaning Representation for Sembanking, 
LAW-2013.
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Abstract Meaning Representation (AMR)
n Basic “who-is-doing-what-to-whom”
n Cover entire sentence content in single, rooted 

structure
n Builds upon PropBank

q Uses PB rolesets: e.g. describe.01
n Arg0: describer
n Arg1: thing described
n Arg2: secondary attribute, described-as

q http://verbs.colorado.edu/propbank/framesets-english/
n PB Same representations: He described her as a 

genius/His description of her: a genius.
n AMR: ditto + As he described her, she is a genius.
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http://verbs.colorado.edu/propbank/framesets-english/


Proposition Bank
Kingsbury & Palmer, TLT 2003, Palmer, Palmer, Gildea, Kingsbury, CL 2005

Roleset id: hear.01 , hear, physically hear
, VerbNet: See-30.1-1-1, Discover-84-1-1, 

FrameNet: Perception_experience Hear
: Arg0-PAG: hearer (Experiencer,Agent)
: Arg1-PPT: utterance, sound (Stimulus, Theme)
: Arg2-DIR: speaker, source of sound (Source)

n English 2M+, Chinese 1M+, Arabic .5M, Hindi/Urdu .6K, Korean
n NomBank for eventive and relational nouns, Myers, et. al. LREC 04
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PropBank Language Experts

ENGLISH
Jena 
Hwang,
Karin Kipper,
Skatje
Myers, 
Claire 
Bonial, 
Olga Babko-
Malaya, 
Paul 
Kingsbury, 
Hoa Dang,
Dan Gildea

中文 (Chinese)
Wei-Te Chen, Nianwen 
Xue, Fei Xia, Shumin
Wu, Zhibiao Wu

 

Chris in his room in Stouffer college house 

 

 

Say good-bye to Mom and Dad 
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Experts

한국어
(Korean)
Jinho Choi, 
Na-rae Han,
Chunghye
Han, 

!हदं% (Hindi) and (Urdu) 
ودرا Bhuvana Narasimhan, 

Ashwini Vaidya, Archna
Bhatia, Riyaz Bhat, 

(Arabic) ىبرع
Aous Mansouri,
Maha Foster

PropBank Language
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“John  could  not  have heard about the
professor’s creation of the microbial viruses 
that Mary sold to Russia yesterday.”

(p2 / possible
:polarity -
:domain (h / hear-01

:ARG0 (p / person 
:name (n / name :op1 "John"))

:ARG1 (c / create-01
:ARG0 (p3 / professor)
:ARG1 (v / virus

:mod (m / microbe)
:ARG1-of (s / sell-01

:ARG0 (p4 / person 

:name (n2 / name :op1 "Mary"))
:ARG2 (c2 / country 

:name (n3 / name :op1 "Russia"))
:time (y / yesterday))))))

(slide courtesy of Kevin Knight)

AMR 
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“John  could  not  have heard about the
professor’s creation of the microbial viruses 
that Mary sold to Russia yesterday.”

(p2 / possible
:polarity -
:domain (h / hear-01

:ARG0 (p / person 
:name (n / name :op1 "John"))

:ARG1 (c / create-01
:ARG0 (p3 / professor)
:ARG1 (v / virus

:mod (m / microbe)
:ARG1-of (s / sell-01

:ARG0 (p4 / person 
:name (n2 / name :op1 "Mary"))

:ARG2 (c2 / country 
:name (n3 / name :op1 "Russia"))

:time (y / yesterday))))))

”microbial virus”

ArgM-TMP

AMR/Propbank
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How is AMR really different from PropBank? 
Discourse relations
n Addition of discourse connectives: 

q But = contrast: “The House has voted to raise the ceiling to $ 
3.1 trillion , but the Senate isn't expected to act until next 
week at the earliest.”

q Even though = concession: “Workers described ‘clouds of 
blue dust’ that hung over parts of the factory, even though 
exhaust fans ventilated the area.”

n Penn Discourse Treebank – inter-sentential
n AMR – intra-sentential
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n Provides more structuring of noun phrases & prepositional 
phrases, intra-sentential coreference and discourse 
relations

n Collapses more ways of saying the same thing, making 
much more use of PropBank predicates.                         
Merge of PB n,v, adj,          O’Gorman, et. al., LREC 2018

n Provides a (partial) representation for  negation and 
modals; PropBank just marks them.

How is AMR really different from PropBank? 

18



AMR combines multiple annotation layers

n PropBank
n Named Entity tagging

q PERson, ORGanization, LOCation (LOTS more NE types)
n Time Expressions – TIMEX
n Coreference

q Obama won the election.  He..
n Discourse Relations 

q Contrast, concession, condition,…
n ….
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Summarizing AMRs
n A more abstract labeled dependency tree 

q w/out function words
q many nouns/adjectives have predicate-argument 

structures as well as verbs
q wikified NE’s
q abstract discourse relations
q partial interpretation of modality and negation 
q “some” implicit arguments/relations
q AND equivalence relations for coreference –

make it a graph (directed acyclic graph).
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Accuracy & Agreement
n AMR uses the smatch metric to calculate agreement rates 

against consensus AMR annotations
n 4 annotators provided AMRs for all 180 adjudicated 

sentences (100 wsj, 80 webtext)
n average smatch agreement rates with consensus AMRs 

were 0.83 (wsj) and 0.73 (webtext)
n PB IAA generally between 92-98%
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Training data supporting…medical histories, 
tracking WMD’s, patent searches, etc.

n Information Extraction
n Text editing
n Text summary / evaluation
n Question and answering
n Machine Translation evaluation

n AMR’s improve over SRL by 2%-6% or more
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How do we capture deep semantics? Recover 
implicit information, temporal and causal 
relations, etc.

n Gas could go to $ 10 a gallon. 
n The president pardoned him for health reasons.
n My mother’s birthday was yesterday and I forgot!
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How do we capture Metonomy?  UD

n Gas could go to $ 10 a gallon.
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How do we capture Metonomy? AMR
n Introduction of understood, but not explicitly mentioned concepts:

Gas could go to $ 10 a gallon

(p / possible
:domain (g / go.01

:ARG1 (t / thing
:ARG2-of (p2 / price-01

:ARG1 (g4 / gas
:quant (v2 / volume-quantity

:unit (g5 / gallon)
:quant 1))))

:ARG4 (m2 / monetary-quantity
:unit (d2 / dollar)
:quant 10)))
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Examples of Metonomy*, 
Metonomy detection leads to more accurate, 
more informative information extraction
n Ellie drank another glass (of wine).
n Boston (‘s football team) won the SuperBowl.
n London (‘s financial center management) is frightened of a no-deal 

Brexit.
n Supreme Court rejects Texas (AG’s) suit.
n ….

* Thanks to James Pustejovsky for types 26



How do we capture causation? UD

n The president pardoned him for health reasons.
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How do we capture causation? AMR

n The president pardoned him for health reasons.
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(p3 / pardon-01
:ARG0 (p / president) 
:ARG1 (h2 / he)
:ARG1-of (c /cause-01

:ARG0 (r / reason
:MOD (h /health))))



Causation examples* crucial for reasoning
n Many have returned home, but some are still too fearful to go back.      

fearful CAUSE go-NEG
n [He] stated that heroin users are ill and need treatment. 

are ill CAUSE need treatment. 
n An ambush triggered a day-long battle

ambush CAUSE battle
n The wildfire began with a lightning strike.

lighting strike CAUSE wildfire
*Richer Event Description Annotation Guidelines
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How do we capture implicit arguments? UD

n My mother’s birthday was yesterday and I forgot!

30

Odd POS tag?:

Right conjunction:



How do we capture implicit arguments? AMR
n My mother’s birthday was yesterday and I forgot!*
n (a / and

:op1 (b / birthday
:poss (p / person

:ARG0-of (h / have-rel-role-91
:ARG1 (i / i)
:ARG2 (m / mother)))

:time (y / yesterday))
:op2 (f / forget-01

:ARG0 i
:ARG1 b))

31 Example from my son, who did NOT forget!



Implicit argument examples*  Anywhere from 
10% to 30% of key event participants

n She found out [? ].
n He signed [? ].
n They won [ ?].
n My proposal is similar [ to ?].
n She explained [?].
n Dropped subjects in Chinese
n Clitics in Romance languages, …
*Thanks to Tim O’Gorman’s dissertation and Chuck Fillmore32

Often refer to mentions from prior sentences



Multi-sentence AMRs

n Add information about which words refer to the same 
thing, how events relate to each other on a timeline, 
chains of cause and effect between events, and other 
kinds of rich information needed for understanding. 

n Focus here on referring expressions, inter-sentential 
coreference

33

Tim O'Gorman, et. al., AMR Beyond the 
Sentence: the Multi-sentence AMR corpus, 

COLING 2018



How do we capture temporal relations?

n He denied any wrongdoing.
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Outline – Compare and Contrast

n Briefly review
q Universal dependencies
q Proposition Bank – semantic role labels

n English Abstract Meaning Representations
q Including implicit arguments and spatial relations

n Moving towards Uniform Meaning Representations
q That are cross-linguistically general
q Add temporal relations, logical form, tense, aspect and modality 
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n Uniform Meaning Representations
Designing Meaning Representation Workshops, ACL2019, COLING 2020

n Current NSF project
q Brandeis (Nianwen Xue & James Pustejovsky) DMR1, DMR2
q Colorado (Martha Palmer, Jim Martin, Andy Cowell) DMR1, DMR2
q U of New Mexico (Bill Croft) DMR1, DMR2

n Ensure adequate coverage for multiple languages, especially 
low resource languages – requires adapting AMR
q e.g., Arapaho, Kukama, English, Chinese, Hindi, Arabic, Spanish, Sanapaná

n ADD: Tense, Aspect, Modality, Logical form so that UMR 
can match formal semantic representations (MRS,DRT)
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The whole team!

n Joint work with Jens Van Gysel, Meagan Vigus, Jayeol Chun, 
Kenneth Lai, Sara Moeller, Jiarui Yao, Jin Zhao, Tim 
O’Gorman, Andrew Cowell, William Croft, Chu-Ren Huang, 
Jan Hajiˇc, James Martin, Stephan Oepen, Martha Palmer, 
James Pustejovsky, Rosaa Vallejos
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How do we capture temporal relations?  UD
n He denied any wrongdoing.
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How do we capture temporal relations? UMR

n s1: Edmund Pope….  (s1p)
n s3: He denied any wrongdoing.
(d / deny-01

:ARG0 (h / he)
:ARG1 (t / thing

:ARG1-of (d2 / do-02
:ARG0 h
:ARG1-of (w / wrong-02))))

(s3 / sentence
:temporal ((s3d :before DCT)
:temporal (s3w :before s3d ) )
:coref ((s3h :same-entity s1p)))
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Crucial for medical histories (NIH), 
For identifying IED scenarios (DARPA),
etc.



Adding Modality and Aspect to UMR

n s1: Edmund Pope….  (s1p)
n s3: He denied any wrongdoing.
(d / deny-01
:Aspect Performance

:ARG0 (h / he)
:ARG1 (t / thing

:ARG1-of (d2 / do-02
:ARG0 h
:ARG1-of (w / wrong-02))))

(s3 / sentence
:temporal ((s3d :before DCT)
:temporal (s3w :before s3d ) )
:modal ( (s3d :AFF AUTH)

(s3d2 :NEG (s3h :AFF AUTH)))
:coref ((s3h :same-entity s1p)))

40

Van Gysel Jens, et. al., Designing a Uniform 
Meaning Representation for Natural Language 
Processing, KI-Kunstliche Intelligenz, 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=56UT_6IAAAAJ&sortby=pubdate&citation_for_view=56UT_6IAAAAJ:rzdxA1pS2h0C


Cross-linguistically comparable treatment of 
new semantic domains (forthcoming)
n Person/Number: Lattices based on existing typological work 

(Corbett, CUP, 2000; Cysouw, OUP, 2003)
n Modality and negation in document-level structure (Boye, de 

Gruyter Mouton, 2012, see Vigus et al., DMR, 2019)
n Degree admodifiers: cross-linguistically applicable values 

based on common practice of field linguists
n Tense and Aspect, using lattices, (Van Gysel, et.al., DMR 

2019)
n Etc.
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Example: Temporal Reference
n Different languages divide semantic continua in different, 

motivated ways in their grammar
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Example: Temporal Reference
n English: past – present – future
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Example: Temporal Reference
n Hua (Haiman 1980): non-future - future
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n Preliminary annotation of Sanapaná oral historical narratives 
(Van Gysel 2020)
q Pilot annotation of 68 lines of text to test UMR annotation tool.

Expansion of AMR/UMR to low-resource 
languages (Vigus et al. DMR 2020)
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Conclusion
n Uniform Meaning Representations, provide a lightweight, 

flexible, cross-linguistically general format for capturing
q Figurative language
q Implicit arguments
q Temporal and causal relations
q Rich spatial configurations
q Logical form
q Tense, Aspect and Modality

n Both within and across sentences
n Are we done?

46

Bonn, et. al., LREC 2020
Lai, Donatelli, Pustejovsky, DMR 2020



Do universal dependencies give us what we need?

n Not all yarn frogs easily.
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Do UMR’s give us everything we want?
n Not all yarn frogs easily.

(f / frog-00
:ARG1 (y / yarn

:mod (a / all :polarity -))
:ARG1-of (e / easy-05))

n Word Embeddings?  Maybe…..Verb + knitting?
n Language use is endlessly creative, and new vocabulary, 

new usages and the long tail are always with us….
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