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Overview

• Linguistic motivation for Questions Under Discussion (QUDs)

• Bringing QUDs into NLP systems

• QUDs for image captioning

• Looking ahead
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Linguistic motivation for
QUDs
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Groenendijk & Stokhof (and Wittgenstein)

Wittgenstein We might very well write every assertion in
the form of a question followed by an affir-
mative expression; for instance ‘Is it raining?
Yes!’ Would that mean that behind every
claim lies a question?

Groenendijk Ja!& Stokhof

Did Bart pass? Who passed? What did Bart do?
↑ ↑ ↑

Bart passed. BARTF passed. Bart PASSEDF.

Who wore what?
↑

The ROCKSTARSF wore LEATHERF.
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Questions/Issues: What are they?

Discourse is structured by evolving abstract, implicit, issues
about which the participants have only partial knowledge.

1. Questions present alternatives.

2. Questions are not necessarily linguistic objects, though
some natural language sentences might identify some of
them.

3. Questions can be partially ordered by some notion of
resolution.
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Conceptions of QUDs

Questions under Discussion (QUDs)
McCarthy 1980; Groenendijk and Stokhof 1984; Rooth 1985;
Lewis 1988; Ginzburg 1996a; Roberts 1996; Büring 1999

Decision problems
Lewis 1969; Clark 1996; Merin 1997; Blutner 1998; Parikh
2001; Beaver 2002; van Rooy 2003; Benz et al. 2005; Franke
2009

Task-orientation
Perrault and Allen 1980; Allen 1991; Hobbs et al. 1993; Allen
et al. 2007; Stone et al. 2007
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Pragmatically required over-answering

Context: Homer calls a hotel.

Homer: Is Lisa Simpson in Room 10?
Clerk A: She’s in room 20.
Clerk B: #No.

Which room is Lisa in?

Is Lisa in 10? Is Lisa in 20? Is Lisa in 30?

7 / 40
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Anaphora

Homer: Did Maggie shoot Burns?

Wiggum: She did.

Who shot whom?

Who did Maggie shoot? Who shot Burns? Who did Lisa shoot?

Did Maggie shoot Homer? Did Maggie shoot Burns? Did Lisa shoot Burns? Did Lisa shoot Homer?

Maggie shot BurnsMaggie shot Homer Lisa shot Burns

8 / 40

Clark and Parikh 2007; Schoubye 2009
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Domain restriction

• Are there typos in my slides?
• Are there bookstores downtown?
• Are there cookies in the cupboard?
• . . .

I didn’t see any.
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Roberts 1996; Ginzburg 1996a; Malamud 2006
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Granularity

Where are you from?

• Connecticut. (Issue: birthplaces)
• The U.S. (Issue: nationalities)
• Stanford. (Issue: affiliations)
• Planet earth. (Issue: intergalactic meetings)
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Groenendijk and Stokhof 1984; Ginzburg 1996b
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Mention-some/mention-all
Who has a lighter?

Mention-all
• Context: Speaker needs to ensure that no one in the

group is going to get stopped by airport security.
• Resolvedness condition: List of everyone who has a

lighter.

Mention-some
• Context: Speaker needs to light their cigar.
• Resolvedness condition: Just name one (friendly, willing,

nearby) person with a lighter.
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Beck and Rullmann 1999; Schulz and van Rooij
2006; Benz 2005
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Structured domain restriction

What cards do you have?

Wide domain
• Context: Speaker dealt the cards and noticed that some

were missing.
• Resolvedness condition: List everything you’re holding.

Narrowed, structured domain
• Context: Speaker folds and wants to know why they lost.
• Resolvedness condition: Just name the good cards.
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Beck and Rullmann 1999; Schulz and van Rooij
2006; Benz 2005
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Identity and issue resolution

Who is Cassius Clay?

1. Muhammed Ali.
2. The person over there [pointing].
3. The greatest heavyweight boxer in history.
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Aloni 2000; van Rooy 2003; Aloni and Port 2015
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Others

• Intonational meaning: Rooth 1985; Büring 1999; Büring
2003; Roberts 1996

• Discourse particles: Roberts 2006; Beaver and Clark
2008; Kratzer and Matthewson 2009; Davis 2011;
Rojas-Esponda 2015

• Presuppositions: Stone et al. 2007; Malamud 2006;
Schoubye 2009; Tonhauser et al. 2013

• Connectives: Merin 1997; Toosarvandani 2010
• Negation and negative polarity: Fauconnier 1975;

Anscombre and Ducrot 1983; Israel 2001, 2004; Potts
2011

• Ellipsis resolution: AnderBois 2010; Barros 2014; Weir
2014; Kotek and Barros 2018
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Summary

• Good evidence that QUDs (broadly construed) are a
factor in resolving context dependence.

• Growing body of quantitative and corpus exploration of
the idea within linguistics and cognitive psychology:
Cooper and Larsson 2001; DeVault 2008; DeVault and
Stone 2007; Ginzburg and Fernández 2010; Goodman
and Lassiter 2015; Kao et al. 2014; Hawkins and
Goodman 2020

• This is helping us better understand where and how
QUDs come into play, and how speakers represent
discourses, issues, and lexical and constructional
meanings.
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Bringing QUDs into NLP
systems
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering
• Image captioning
• Image description
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Application areas

• Core language understanding
• Dialogue
• Question generation

• Task-oriented question
answering

• Image captioning
• Image description

Passage

Question Answer
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering

• Image captioning
• Image description

Task

Question Answer
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• Question generation
• Task-oriented question

answering
• Image captioning

• Image description

Which celebrities make the
most money?
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering
• Image captioning

• Image description

Which celebrities make the
most money?

Lionel Messi is among the
highest paid athletes in the

world.
17 / 40
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering
• Image captioning

• Image description

Famous Argentines

Lionel Messi hails from
Rosario.
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering
• Image captioning

• Image description

What’s the deal with soccer
players’ hair?

Lionel Messi is known for
his elaborate hairstyles.
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Application areas

• Core language understanding
• Dialogue
• Question generation
• Task-oriented question

answering
• Image captioning
• Image description

(Kreiss et al. 2021)
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Approaches

• Supervised learning on QUD annotations
• Symbolic encoding
• Distributed numerical encoding
• Structured domains
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QUD annotations

. . . and then you realize the power you have. You can wire
tap the President of the United States, you can wire tap a
Federal Judge.

. . .

and then you realize
the power you have

What power do you have?

Whom can you wire tap?

You can wire tap the
President of the
United States

you can wire tap a
Federal Judge

19 / 40
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Symbolic encoding

56 CHAPTER 2. BASIC ISSUE-BASED DIALOGUE MANAGEMENT

(2.18) issue : ?x.price(x)
plan: ⟨
findout(?x.means of transport(x)),
findout(?x.dest city(x)),
findout(?x.depart-city(x)),
findout(?x.depart-month(x)),
findout(?x.depart-day(x)),
findout(?x.class(x)),
consultDB(?x.price(x))

⟩

(2.19) issue : ?need visa
plan: ⟨
findout(?x.dest city(x)),
findout(?x.citizenship(x)),
consultDB(?need visa),

⟩

Sortal hierarchy

top

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

city

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

paris
london
goteborg
. . .

means of transport

⎧
⎪⎨
⎪⎩

plane
boat
train

month

⎧
⎪⎨
⎪⎩

january
february
. . .

day
{

1, 2, . . . , 31

class

{
economy
business

price
{

Nat

Sortal restrictions

The sortal restrictions on (arguments of) propositions are shown in Table 2.4.

2.11. SAMPLE DIALOGUE WITH IBIS1 59

getLatestMove{
set(/shared/lu/moves, set([ask(?A.price(A))]))
set(/shared/lu/speaker, usr)

integrateUsrAsk{
push(/shared/qud, ?A.price(A))
push(/private/agenda, respond(?A.price(A)))

findPlan{
pop(/private/agenda)
set(/private/plan, stack([raise(?C.how(C)), findout(?D.dest city(D)), . . . ]))

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

private =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

agenda = ⟨⟩

plan =

〈
raise(?A.how(A))
findout(?B.dest city(B))
findout(?C.dept city(C))
findout(?D.month(D))
findout(?E.dept day(E))
findout(?F .class(F ))
consultDB(?G.price(G))

〉

bel = {}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

shared =

⎡
⎢⎢⎣

com = {}
qud =

〈
?H.price(H)

〉

lu =

[
speaker = usr
moves =

{
ask(?H.price(H))

}
]

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

selectFromPlan{
push(/private/agenda, raise(?A.how(A)))

selectAsk{
add(next moves, ask(?A.how(A)))
if do(fst($/private/plan, raise(?A.how(A))), pop(/private/plan))

S> How do you want to travel?

getLatestMove
integrateSysAsk{

push(/shared/qud, ?A.how(A))

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

private =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

agenda = ⟨⟩

plan =

〈
findout(?A.dest city(A))
findout(?B.dept city(B))
findout(?C.month(C))
findout(?D.dept day(D))
findout(?E.class(E))
consultDB(?F .price(F ))

〉

bel = {}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

shared =

⎡
⎢⎢⎢⎢⎣

com = {}

qud =

〈
?G.how(G)
?H.price(H)

〉

lu =

[
speaker = sys
moves =

{
ask(?G.how(G))

}
]

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Distributed encoding

GPT-3: “Professor” context
Sandy is Jesse’s professor. Sandy says, “Have you done the
assignment?” Jesse replies, “No, I haven’t.” Sandy then says,
“Can I see your grade? You’re failing.” Jesse is upset, but Sandy
says, “Don’t worry. I’ll help you.” Jesse replies, “Thanks, but I can
do it myself.” Sandy says, “You can’t do it yourself.” Jesse replies, “I
can.”

GPT-3: “Classmate” context
Sandy is Jesse’s classmate. Sandy says, “Have you done the
assignment?” Jesse replies, “Yes, I have done it.” Jesse is not a
teacher, but he is an adult. Sandy is not an adult, but she is also not
a child. Jesse and Sandy are third grade students.

Quick experiment
FWIW – In 16/20 cases, I was able to correctly guess the prompt
from the continuation.
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QUDs for image captioning
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Issue-sensitive image captioning

Lionel Messi is known for his
elaborate hairstyles.

23 / 40
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Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1924–1938
November 16 - 20, 2020. c�2020 Association for Computational Linguistics

1924

Pragmatic Issue-Sensitive Image Captioning

Allen Nie1 Reuben Cohn-Gordon2

1Department of Computer Science 2Department of Linguistics
Stanford University

{anie, reubencg, cgpotts}@stanford.edu

Christopher Potts1,2

Abstract

Image captioning systems need to produce
texts that are not only true but also relevant
in that they are properly aligned with the cur-
rent issues. For instance, in a newspaper arti-
cle about a sports event, a caption that not only
identifies the player in a picture but also com-
ments on their ethnicity could create unwanted
reader reactions. To address this, we propose
Issue-Sensitive Image Captioning (ISIC). In
ISIC, the captioner is given a target image and
an issue, which is a set of images partitioned
in a way that specifies what information is rele-
vant. For the sports article, we could construct
a partition that places images into equivalence
classes based on player position. To model
this task, we use an extension of the Ratio-
nal Speech Acts model. Our extension is built
on top of state-of-the-art pretrained neural im-
age captioners and explicitly uses image par-
titions to control caption generation. In both
automatic and human evaluations, we show
that these models generate captions that are de-
scriptive and issue-sensitive. Finally, we show
how ISIC can complement and enrich the re-
lated task of Visual Question Answering.

1 Introduction

Image captioning systems have improved dramat-
ically over the last few years (Karpathy and Fei-
Fei, 2015; Vinyals et al., 2015; Hendricks et al.,
2016; Rennie et al., 2017; Anderson et al., 2018),
creating new opportunities to design systems that
are not just accurate, but also produce descrip-
tions that include relevant, characterizing aspects
of their inputs. Many of these efforts are guided by
the insight that high-quality captions are implicitly
shaped by the communicative goal of identifying
the target image up to some level of granularity
(Vedantam et al., 2017; Mao et al., 2016; Luo et al.,
2018; Cohn-Gordon et al., 2018).

In this paper, we seek to more tightly control the

Issues Target Caption

a small brown 
bird with a tan 
chest and a tan 
beak

this bird has a 
brown crown a 
white eyebrow 
and a rounded 
belly

What is the color of the bird?

What is the head pattern of the bird?

Figure 1: Examples highlighting the power of an issue-
sensitive image captioner. Four images are partitioned
in two ways, each capturing different issues by group-
ing them into equivalence classes. The first row con-
trasts the brown and grey color of the bird, and the sec-
ond contrasts the existence of white eyebrows. The tar-
get image is the same in both cases, but the partition
leads to different captions that key into the structure of
the input issue.

information that a pretrained captioner includes in
its output texts. Our focus is on generating captions
that are relevant to the current issues. To see how
important this can be, consider a newspaper article
covering the action in a sports event. In this context,
a caption that not only identified the player in a
picture but also commented on their ethnicity could
create unwanted reactions in readers, as it would
convey to them that such information was somehow
deemed relevant by the newspaper. On the other

24 / 40
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Goals and approach

Goals
1. QUD-sensitive image/text pairs
2. No special annotation
3. No new datasets
4. No new model training

Approach

• Rational Speech Acts model (RSA) with QUDs (Goodman
and Lassiter 2015; Kao et al. 2014; Hawkins and
Goodman 2020)

• Neural RSA (Andreas and Klein 2016; Fried et al. 2018;
Monroe et al. 2017, 2018)

25 / 40
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Desired behavior

¨

n o n o n o

«

“A red square”

¨

n o n o n o

«

“A small square”

Target CaptionIssue/QUD

Texts should describe the cell containing the target.

26 / 40
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Some more issues
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Some more issues

What color crown?
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Some more issues
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Some more issues

What color body?
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Some more issues
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Some more issues

What position?
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Some more issues
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Some more issues

Gray pants?
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Rational Speech Acts model

Issue-sensitive pragmatic speaker

Pragmatic listener

Base speaker

S0(msg | img) as given by a pretrained image2text model
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Rational Speech Acts model

Issue-sensitive pragmatic speaker

Pragmatic listener

L1(img |msg) =
S0(msg | img)P(img)

∑

img′∈ImagesS0(msg | img′)P(img′)

Base speaker

S0(msg | img) as given by a pretrained image2text model
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Rational Speech Acts model
Issue-sensitive pragmatic speaker

SC1 (msg | img,C) ∝

exp

�

α log
�

∑

img′∈Images

δ[C(img)=C(img′)]L1(img′ |msg)
�

+ logS0(msg | img)

�

Pragmatic listener

L1(img |msg) =
S0(msg | img)P(img)

∑

img′∈ImagesS0(msg | img′)P(img′)

Base speaker

S0(msg | img) as given by a pretrained image2text model
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Rational Speech Acts model
Issue-sensitive pragmatic speaker

SC1 (msg | img,C) =

L1(img |msg) at the level of details given by C

−message costs

Pragmatic listener

L1(img |msg) = base speaker × prior on images

Base speaker

S0(msg | img) as given by a pretrained image2text model

28 / 40
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Example calculation

small red circle green

1 1 0 0

0 1 1 0

1 0 1 1

0 0 0 1

• SC1

• L1

• S0

29 / 40
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Example calculation

S0 small red circle green

0.50 0.50 0.00 0.00

0.00 0.50 0.50 0.00

0.33 0.00 0.33 0.33

0.00 0.00 0.00 1.00

• SC1

• L1

• S0
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Example calculation

L1

small 0.60 0.00 0.40 0.00

red 0.50 0.50 0.00 0.00

circle 0.00 0.60 0.40 0.00

green 0.00 0.00 0.25 0.75

• SC1

• L1

• S0
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Example calculation

S1 small red circle green

0.55 0.45 0.00 0.00

0.00 0.45 0.55 0.00

0.38 0.00 0.38 0.24

0.00 0.00 0.00 1.00

• SC1

• L1

• S0
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Example calculation

SC1 small red circle green

0.27 0.45 0.27 0.00

0.27 0.45 0.27 0.00

0.22 0.00 0.22 0.56

0.22 0.00 0.22 0.56

¨

n

,
o

,
n

,
o

«

• SC1

• L1

• S0
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CalTech-UCSD Bird Dataset (CUB)

11,788 images for 200 species of North American birds, each
annotated with 312 attributes using a system devised by
ornithologists.

Attribute Annotation

Has_Bill_Shape::All-purpose

Has_Wing_Color::Brown

Has_Wing_Color::Rufous

Has_Back_Color::Brown

Has_Head_Pattern::Eyebrow

Has_Size::Small

30 / 40
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Some CUB system outputs
Issues Target Caption

a small brown 
bird with a tan 
chest and a tan 
beak

this bird has a 
brown crown a 
white eyebrow 
and a rounded 
belly

What is the color of the bird?

What is the head pattern of the bird?

31 / 40

Pretrained model from Hendricks et al. 2016
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Human evaluation
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Human evaluation

Caption Source Percentage Size

S0 20.9 273
S1 24.5 273

SC1 42.1 273

SC+H
1 44.0 273

Human 33.3 273
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MS COCO and VQA 2.0

Inducing partitions

• VQA 2.0 contains triples (image, question, answer)
• Given question, find all associated images, and partition

based on answer.

Moving to a trained VQA system
Given a question and a set of images, use the system to
create a partition.

33 / 40
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Some MS COCO system outputs

IssuesTarget Issue-sensitive CaptionPartitions Base Caption

What color is the sky? a black and white 
photo of an 
airplane in the sky

an airplane taking 
off from an airport 
runway

How many toilets are there?
a bathroom with a 
tub and a toilet 
and a window

a bathroom with two 
toilets and a tub

34 / 40



Overview Linguistic motivation for QUDs Bringing QUDs into NLP systems QUDs for image captioning Looking ahead

Summary

Goals
1. QUD-sensitive image/text pairs Progress!

2. No special annotation "

3. No new datasets "

4. No new model training "

Required ingredients

• Pretrained image-to-text model
• Method for structuring images into issues (partitions)
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Looking ahead

1. QUDs are central to many aspects of language use

2. QUDs could benefit a wide range of NLP tasks

3. We can control text generation via simple QUD-like
structures on the contexts (images):

SC1 (msg | img,C)

4. Can we achieve similar effects using language models?

LM(msg | world,question)

Thanks!
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